Combinative Multi-scale Level Set Framework for Echocardiographic Image Segmentation
نویسندگان
چکیده
In the automatic segmentation of echocardiographic images, a priori shape knowledge has been used to compensate for poor features in ultrasound images. This shape knowledge is often learned via an off-line training process, which requires tedious human effort and is highly expertise-dependent. More importantly, a learned shape template can only be used to segment a specific class of images with similar boundary shape. In this paper, we present a multi-scale level set framework for segmentation of endocardial boundaries at each frame in a multiframe echocardiographic image sequence. We point out that the intensity distribution of an ultrasound image at a very coarse scale can be approximately modeled by Gaussian. Then we combine region homogeneity and edge features in a level set approach to extract boundaries automatically at this coarse scale. At finer scale levels, these coarse boundaries are used to both initialize boundary detection and serve as an external constraint to guide contour evolution. This constraint functions similar to a traditional shape prior. Experimental results validate this combinative framework.
منابع مشابه
SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAutomatic Extraction of Water in High-resolution Sar Images Based on Multi-scale Level Set Method and Otsu Algorithm
Water extraction has an important significance in flood disaster management and environmental monitoring. Compared to optical sensor, Synthetic aperture radar (SAR), which has the properties of high resolution and all-weather acquisition, has been used for water extraction in this paper. Due to the presence of coherent speckles, which can be modeled as strong, multiplicative noise, water extrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image analysis
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2002